PRACTICE: SOLUBILITY CALCULATIONS ANSWERS

1.

	$Ba(NO_3)_2(s)$	4	Ba ²⁺ (aq)	+	2 NO ₃ ⁻ (aq)
Ι	—		0		0
С	—		+χ		+2x
Е	_		х		2x

$$K_{sp} = [Ba^{2+}(aq)] [NO_{3}^{-}(aq)]^{2}$$

= (x)(2x)^{2}
= 4x^{3}
= 4(0.105)^{3} {molar solubility = 0.105 mol/L, therefore, x =0.105}
= 4.6305 \times 10^{-3}

Therefore, the solubility product constant for barium nitrate at 25° C is 4.63×10^{-3} .

2.

	Zn(OH) ₂ (s)	4	Zn ²⁺ (aq)	+	2 OH⁻(aq)
Ι			0		0
С	-		+χ		+2x
Е	_		Х		2x

$$\begin{split} &\mathsf{K}_{sp} \; = \; [\mathsf{Zn}^{2+}(\mathsf{aq})] \; [\mathsf{OH}^{-}(\mathsf{aq})]^2 \\ &7.7 \times 10^{-17} \; = \; (\mathsf{x})(2\mathsf{x})^2 & \{\mathsf{K}_{sp} = 7.7 \times 10^{-17} \; \text{from data table on p19 in course manual}\} \\ &7.7 \times 10^{-17} \; = \; 4\mathsf{x}^3 & \\ &1.925 \times 10^{-17} \; = \; \mathsf{x}^3 & \{\text{divide by 4}\} \\ &2.680... \times 10^{-6} \; = \; \mathsf{x} & \{\text{take cube root}\} \end{split}$$

Therefore, the molar solubility of zinc hydroxide in water at 25° C is 2.7×10^{-6} mol/L.

3. The solubility product constant for silver chloride (1.8×10^{-10}) is greater than the solubility product constant for silver bromide (5.4×10^{-13}) . Therefore, silver chloride has the greater solubility.